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Abstract. Neutron scattering measurements with isotopic substitution of Ti have been carried
out on a K2O–TiO2–2SiO2 glass using46Ti and 48Ti isotopes. The total structure factors and
the first difference function (giving all the partial pair correlation functions centred on Ti) were
fitted by the reverse Monte Carlo (RMC) technique to generate a three-dimensional structural
model of this glass. Information was obtained on the medium-range ordering around Ti. The
structure determined with RMC indicates a non-homogeneous distribution of Ti in the glass in
agreement with the available scattering data.

1. Introduction

A better knowledge of the structure of glasses is necessary to understand their physico-
chemical properties. Important information on local and medium-range order in glasses
can be obtained from the distribution functions extracted from neutron and x-ray scattering.
Furthermore, using x-ray anomalous scattering [1] or isotopic substitution with neutron
scattering [2–4], it is possible to probe selectively the environment of one specific element.
In order to extract more structural information, modelling techniques are necessary. Monte
Carlo and molecular dynamics simulations were widely used to provide some insight into
glass structures [5–7]. These methods rely on the use of interatomic potentials and the
development of three-body terms allows more realistic representations to be obtained. Since
it becomes difficult to justify the addition of more terms to potential functions, it is not
clear how interatomic potentials can be improved. Although good qualitative agreement
is generally obtained between simulations and experimental results, it is more difficult to
reproduce quantitatively the data. The reverse Monte Carlo (RMC) approach [8] offers the
possibility to obtain a quantitative fit of the experimental data as no potential functions
are used. This technique is particularly appealing for the study of multicomponent glasses
where the determination of potential functions is difficult.

In this paper we present a reverse Monte Carlo simulation of a K2O–TiO2–2SiO2 glass
studied by neutron diffraction with isotopic substitution of Ti. The first difference function
which gives the weighted sum of all the Ti-centred pair functions was used in the fitting
process, which allows the environment around this element to be constrained. The three-
dimensional structural model created by RMC is consistent with the neutron experimental
data. The analysis of the RMC configuration provides information on the silicate network
and on the medium-range order (MRO) around Ti.
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2. The RMC method

The RMC method has been extensively described elsewhere [9] and only a brief outline
will be given. The basis for RMC simulation is the Metropolis Monte Carlo algorithm but,
instead of the energy of a set ofN atoms, the RMC technique samples the quantityχ :

χ2
k =

∑
k

∑
i

[Fck (Qi)− Fek (Qi)]

2σ 2
k (Qi)

(1)

where Fe are the experimental data withi points, Fc are the corresponding quantities
that are calculated with the atomic coordinates, andσ is a parameter taking into account
the experimental errors. The sum overk indicates that different data sets can be
used simultaneously during the procedure. These data can be from various sources:
neutron scattering (including isotopic substitution), x-ray scattering (including anomalous
scattering), EXAFS. The atomic configuration is thus optimized only by comparison with
the experimental data. This allows a model to be obtained that agrees quantitatively with the
available data (in contrast to most of the Monte Carlo or molecular dynamics simulations).

The procedure consists of moving an atom randomly and then calculating the newFc and
the newχ2 factor. If χ2 is improved, the displacement is accepted; if not, the displacement
is accepted with a probability exp(−(χ2

n − χ2
o )/2), whereχn andχo are, respectively, the

new and the old configuration. This latter condition allows a wider solution space to be
sampled, by avoiding only a refinement of the initial configuration.

Table 1. Parameters for the initial configuration used in the RMC simulation.

Types of atom Number Density (atomsÅ
−3

)

Si 200 0.010 75
O 700 0.032 24
K 200 0.0484
Ti 100 0.064 48

3. The initial configuration

A crystal structure can be used as the starting configuration; however there is no crystalline
K2O–TiO2–2SiO2. A random configuration was thus generated with the following steps
(see also table 1).

- Si atoms were randomly introduced with a density of 0.010 75 atomsÅ
−3

. A hard-
sphere Monte Carlo simulation (HSMC) was run to constrain each Si to be linked to four
Si between 2.9 and 3.4̊A.

- O atoms were added in the middle of each Si–Si bond (density of 0.032 24 atoms̊A
−3

),
giving a three-dimensional network of SiO4 tetrahedra. A constraint was then imposed to
preserve these structural units.

- O atoms were added to reduce the connectivity of the network and K atoms were
introduced in proximity to non-bridging bonds. This simulates the introduction of K2O

(density of 0.0484 atomsÅ
−3

).
- The previous step was repeated to introduce TiO2. This gives a model in agreement

with the experimental atomic density (ρ = 0.0645 atomsÅ
−3

). The Ti site can be
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determined without ambiguity by neutron scattering (see below). As RMC is used to
obtain information on MRO, the local environment around Ti was constrained by running
a HSMC simulation. Distances of closest approach between two types of atom were
also imposed, based on the experimental correlation functions and the distances found in
crystalline references (table 2).

We thus created a cubic box with edges,L, equal to 26Å (ρ = N/L3). The configuration
contains 1200 atoms and periodic boundary conditions were used. During the simulation, the
SiO4 and TiO5 polyhedra were maintained and the constraints on closest approach distances
were applied.

Table 2. Distances of closest approach (inÅ) between two types of atom determined from the
radial distribution functions and from crystalline references.

Si O K Ti

Si 2.6 1.4 2.9 2.6
O 2.3 2.3 1.5
K 2.9 2.9
Ti 2.9

4. Neutron scattering data

Neutron scattering measurements were carried out on the SANDALS diffractometer at the
ISIS spallation neutron source (UK) on a K2O–TiO2–2SiO2 glass [10]. Isotopic substitution
of Ti allows a first difference function (sum of all the Ti-centred partial pair correlation
functions) and a second difference function (only the Ti–Ti partial correlation function) to
be calculated.

Data for the46Ti sample and the first difference were used in a first step. When a
reasonable agreement was achieved, the data for the48Ti and mixTi samples were added.
We did not use the second-difference data (giving the Ti–Ti pairs only) as this signal is
subject to large statistical and systematic errors. OnlyQ-space data were fitted because
some features related to the MRO (first sharp diffraction peak, FSDP) do not give an
apparent contribution inr-space.

5. RMC results and discussion

In figure 1, the sets of experimental data are compared with the RMC simulations. An
excellent agreement is obtained for the first difference describing the environment of Ti.
The total structure factors are also well fitted despite some small differences in the intensity
of the low-Q part. The variations in the low-Q region arise from the differences in the
Ti neutron scattering length for each sample (48Ti = −6.003 fm, mixTi = −1.713 fm,
46Ti = 2.577 fm). The shape of the first sharp diffraction peaks, which is linked to the
MRO in the glass, is well reproduced for all structure factors.

In table 3, the coordination numbers for Si, K and Ti are compared to those obtained
by fitting the neutron data with Gaussian functions. A good agreement is obtained, except
for K where the RMC model gives a coordination number of five instead of eight. The K-
centred partials are mainly contained in the total structure factors where they are buried by
the partials related to the silicate network (O–O, Si–O). In consequence, the potassium
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Figure 1. Comparison between the total experimental structure factors (solid curves) and the
RMC fits (dotted curves) for the glasses containing48Ti, 46Ti andmixTi (equal mixture of46Ti
and 48Ti) and for the first difference of Ti (dif) which is the sum of all the Ti-centred partial
structure factors.

Table 3. Coordination numbers determined by RMC modelling compared to those calculated
by Gaussian fitting [10] of the correlation function (total and first difference).

Pairsi–j Interval to calculateNRMC (Å) NRMC Nneutron

Si–O 0–1.8 3.96 3.98
O–Si 0–1.8 1.13 1.12
Ti–O 0–2.05 4.72 4.85
O–Ti 0–2.05 0.67 0.12+ 0.58
O–O 0–3 5.59 4.9
K–O 0–3.5 5.05 7.8

environment is poorly constrained in the RMC model, which explains a low apparent
coordination number.

The Ti–O partial dominates the first difference function,GT i−α(r) (figure 2). Analysis
of the GT i−α(r) function indicates that Ti atoms occur at the centre of a square-based
pyramid: four oxygens at 1.96̊A form the square base and one (titanyl) oxygen at 1.68Å
the apex [10]. Before starting the RMC simulation, the local environment around Ti was
constrained to reproduce this site: one oxygen below 1.75Å and four oxygens between
1.75 and 2.05Å. The comparison with the experimental data indicates that the first Ti–O
distances after the RMC simulation are slightly shifted to a higher value (about 0.04Å).
First Si neighbours around Ti are located at 3.26Å, close to the values of 3.2̊A observed in
crystalline titanosilicate references. In contrast the Ti–K distances are widely spread. This
suggests that K atoms are in more distorted sites than Ti or Si atoms in agreement with their
compensating role in the structure around the titanyl oxygen. The Ti–Ti distribution can be
compared with the second difference function obtained experimentally (figure 3). With the
RMC simulation a first intense peak is obtained near 3Å. This peak is probably due to
the constraint of closest approach fixed at 2.9Å for the Ti–Ti pair and this distance is not
meaningful. However the first experimental Ti–Ti distance at 3.5Å (the peak at 2Å is a
spurious feature arising from an incomplete subtraction of the Ti–O correlation) is roughly
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(a)

(b)

Figure 2. Partial correlation functions for the RMC model: (a)gK−O , gSi−K , gO−O , gSi−O ,
gSi−Si ; (b) gT i−T i , gT i−Si , gT i−K , gK−K , gT i−O . The functions were multiplied by the
weighting factors corresponding to the46Ti glass and then shifted for clarity.

reproduced by the RMC simulation. A homogeneous distribution of Ti in the glass gives a
first Ti–Ti distance of 6.1̊A. The RMC model supports thus a non-random distribution of Ti
in the structure with a low first Ti–Ti distance (compared to a value larger than 4Å in silicate
crystals containing fivefold coordinated titanium). These small Ti–Ti distances indicate that,
in contrast to silicate crystals, the TiO5 polyhedra are linked together by sharing a corner,
with an average Ti–O–Ti angle of 126±10◦. Edge sharing is avoided due to the strong Ti–Ti
repulsion. Moreover, a number of 2.4 Ti neighbours is obtained with RMC, which agrees
with an estimate of two derived from the second difference function by Gaussian fitting [10].
The RMC model indicates that 1.8 Si atoms are present on average around the Ti atoms,
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Figure 3. Comparison of the experimental distribution of Ti (solid curve) obtained directly
from the second-order difference and the RMC modelling (dotted curve). A first Ti–Ti distance
of 2 Å is unphysical and the peak observed on the experimental curve is probably due to an
incomplete subtraction of the Ti–O correlation.

which indicates that the 4 O of thesquare base participate in the polymerization of the
network by a corner linkage either with another TiO5 pyramid or with an SiO4 tetrahedron.
The short Ti=O (titanyl) bond is non-bridging, and the charge compensation of this bond
is ensured by potassium atoms. Figure 4 represents a slice of about 10Å into the RMC
configuration. The inhomogeneous structure of the glass can be visualized with the presence
of Ti-rich regions and Si-rich regions. The distribution of K atoms is also non-homogeneous
but an association with Ti or Si atoms is not clear. The structure modelled by RMC is not
unique. In particular, the choice of the initial configuration is of great importance. Starting
with a random configuration gives a more disordered model consistent with the available
experimental data and the constraints applied. It is thus important to note that the real glass
almost certainly presents more structural ordering than that observable in this RMC model.

The bond angle distributions for Si–O–Si and O–Si–O are given in figure 5. The O–Si–O
distribution shows a maximum close to the value expected for a regular SiO4 tetrahedron
at 109.3◦. The O–Si–O angles are widely distributed though a weak maximum can be
observed near 150◦, close to recent calculations on SiO2 [11].

With the atomic coordinates of each atom, all the partial pair correlation functions can
be calculated (figure 2). Si atoms were constrained to remain in tetrahedral sites; however
a small fraction of Si (<2%) has an unusual configuration (1, 2 or 5 O neighbours). Si–O
and O–O partials dominate the total correlation function at highr. They can be used to
assign the 4 and 5̊A peaks to Si–O and O–O correlations, respectively. Similar values have
been found in vitreous SiO2 [12] and are also in good agreement with molecular dynamics
simulations on alkali silicate glasses [7]. Mozzi and Warren [12] also indicated a first Si–Si
distance at 3.1̊A which is close to the 3̊A peak in the Si–Si partial. On average, Si atoms
are linked with 2.8 Si and 0.9 Ti, giving a total coordination number for second neighbours
of 3.7. This seems to indicate that the glass has a three-dimensional network. There is
no NMR measurements on this glass but an NMR study on a potassium trisilicate glass
[13] indicates that the predominant species isQ3 (Q3 andQ4 are predominant in the RMC
model). Despite its high coordination number, titanium acts thus as a network former in
the structure.
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Figure 4. Representation of the glass structure modelled by RMC for a slice (about 10Å) in
the configuration of 1200 atoms.

Figure 5. RMC distributions of O–Si–O (left) and Si–O–Si (right) bond angles.

The K–O partial function presents a maximum at 2.8Å in agreement with K–O distances
determined by EXAFS [14, 15] but as mentioned earlier the coordination number of five is
low. The lack of structural data on the medium-range order around potassium is illustrated
in the K–K partial function. A first K–K distance at 3̊A is observed. This value seems
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short compared to the K–K distances existing in crystalline silicate [16] (4Å) or molecular
dynamic simulations of a potassium silicate glass [7] (∼3.75 Å). However, similar distances
(3.2 Å) are found in crystalline K2Ti2O5 which contains five-coordinated titanium [17].
Furthermore a distance of 3̊A is close to the limit imposed by the constraint of closest
approach between two potassium atoms (fixed at 2.9Å). This indicates that atoms generally
tend to reach this lower limit because atomic displacements are facilitated (there are fewer
steric constraints when the ‘spheres’ have smaller radii).

A modelling of this multicomponent glass using atomic potentials would be a tedious
task to correctly reproduce the MRO around Ti. Although a common use of RMC and
other simulating techniques (Monte Carlo, molecular dynamics) is necessary to obtain
thermodynamic stable structures consistent with the experimental data sets, the separate
use of RMC can help us to understand the glass structure. Despite a low statistic (box size
limited to 26Å, 100 Ti atoms), the RMC model confirmed some experimental results (direct
corner linkage between Ti polyhedra, presence of about 2 Si and 2 Ti second neighbours
around a Ti atom, non-random distribution of Ti).

6. Conclusions

Using the RMC technique, the structure of a potassium titanosilicate glass has been modelled
by fitting neutron scattering data obtained using isotopic substitution on Ti. The model
reproduces the local environment of each species in the glass and gives structural three-
dimensional information that allows a better understanding of the medium-range order
around Ti. The distribution of Ti is broadly consistent with the experimental second
difference. The RMC simulation is in agreement with an inhomogeneous glass structure
with some regions enriched in Ti and some regions enriched in Si. This heterogeneous
structure may provide a key to understand the unusual thermodynamic properties of this
glass.
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